رفتن به محتوای اصلی

روش تحصیل عدد پی

عدد پی، عددی است که روی نقطه معیّنی روی محور است، اما شما نمی‌توانید نشانش بدهید. چه کار می‌کنید؟ از پس و پیش، به آن نزدیک می‌شوید. یعنی از ۳.۱۴ که مثلاً با ۹۶ ضلعی ارشمیدس بوده[1]، از نقطه‌ ۳.۱۴ شروع می‌کنید، بعد از ۳.۱۴ روی محور، ۳.۱۵ است. می‌گویید نقطه پی که محیط دایره است، بین ۳.۱۴ و ۳.۱۵ هست. نه بیرون از ۳.۱۵ است، نه عقب‌تر از ۳.۱۴ است؛ بین این دو تاست. از طرفین(۳.۱۵ و ۳.۱۴ )به آن نزدیک‌تر می‌شوید وتا بی‌نهایت می‌روید. حدّش[2] هست. به تعبیر مسامحی می‌گوییم در بی‌نهایت به پی میل می‌کند.

 امروز دیگر اینها از واضحات است، یعنی اهل خبره دو نفرشان هم در این اختلاف ندارند، امروز برای بشر، این  که عدد پی عددی است گنگ[3]، متعالی[4]و رسم‌ناپذیر[5]، این‌ها همه مبرهن شده است[6]


[1] ارشمیدس محیط دایره را نمی‌دانست؛ اما ناامید نشد و از آنچه می‌دانست یعنی محیط یک مربع آغاز کرد. البته او در واقع با یک شش‌ضلعی محاسبه خود را آغاز کرد؛ اما از آنجا که ترسیم و کار کردن با مربع آسان‌تر است، ما از مربع استفاده می‌کنیم.

ما محیط یک دایره را نمی‌دانیم؛ اما می‌توانیم آن را بین دو مربع[محیطی و محاطی] رسم کنیم:

Picture7.png

دقت کنید که این وضعیت شبیه مسیر مسابقه‌ای با یال‌های داخلی و خارجی است. محیط دایره هر چه که باشد بین محیط دو مربع قرار دارد، یعنی بیشتر از محیط مربع داخلی و کمتر از محیط مربع بیرونی است.محیط مربع‌ها را می‌توانیم به سادگی محاسبه کنیم:ما نمی‌دانیم که پی چقدر است؛ اما می‌دانیم که عددی بین 2.8 و 4 است. اگر تصور کنیم دقیقاً نیمه این دو کرانه باشد، پس باید در حدود 3.4 باشد.

 مربع‌ها گوشه‌دار هستند. آن‌ها را نمی‌توان چندان شبیه دایره دانست و این اختلاف موجب محاسبات نادرست و با اشتباه زیاد می‌شود؛ اما با افزایش اضلاع، برای مثال با استفاده از هشت‌ضلعی می‌توانیم حدس بهتری از عدد پی داشته باشیم.

Picture6.png

نان که می‌بینید با افزایش تعداد اضلاع، به شکل یک دایره نزدیک‌تر می‌شویم. متأسفانه اعداد اعشاری در سال 250 قبل از میلاد هنوز اختراع نشده بودند، چه برسد به نرم‌افزارهای صفحه گسترده. بنابراین ارشمیدس مجبور بود که این فرمول‌ها را به کمک کسرها حل کند. او کار خود را با شش‌ضلعی آغاز کرد و با ١٢، 24، 48 و 96 ضلع ادامه داد. تخمین نهایی وی از عدد پی با استفاده از شکلی با 96 ضلع به صورت زیر بود:

Picture5.png

نقطه میانی این بازه برابر با 3.14185 است که تقریباً 99.9% دقیق است!(سایت فرادرس،مقاله عدد پی چگونه کشف شد؟)

[2] حد (به انگلیسی:( Limit): وقتی که مقادیر متوالی به یک متغیر نسبت داده می‌شود، و آن متغیر بی‌نهایت به عدد ثابتی نزدیک شود، به طوری که اختلاف آن‌ها از مقدار ثابت به هر اندازه کوچک قابل انتخاب باشد، این مقدار ثابت را حد همه مقادیر متغیر می‌گویند.(سایت ویکی پدیا)

[3] عدد غیر نسبی، گُنگ یا اصم به انگلیسی:( Irrational number) در دستگاه اعداد به‌صورت عددی حقیقی تعریف می‌شود که عدد نسبی (عدد گویا) نباشد، یعنی نتوان آن را به صورت کسری نوشت که صورت و مخرجش عدد صحیح باشند.(همان)

[4] عددی که جبری نباشد، عدد متعالی یا ترافرازنده یا غیرجبری نامیده می‌شود.

نمونه‌های برجسته‌ای از اعداد ترافرازنده π و e می‌باشند. نمونه‌های کمی از اعداد ترافرازنده شناخته شده‌اند چرا که اثبات ترافرازنده بودن یک عدد دشوار است. با این حال، شمار آن‌ها کم نیست و تقریباً همهٔ اعداد مختلط و حقیقی ترافرازنده شمرده می‌شوند.

نخستین اثبات وجود اعداد ترافرازنده (متعالی) را جوزف لیوویل، ریاضی‌دان فرانسوی، در سال ۱۸۴۴ داده است.

 (سایت ویکی پدیا، مدخل اعداد متعالی در این صفحه همچنین طبقه بندی اعداد را می توانید مشاهده کنید.)

اعداد گنگ دو نوع دارند: اعداد جبری (algebraic numbers) و اعداد متعالی (transcendental numbers)
مجموعه اعداد گنگ (Irrational Numbers)

به یک معنا، اعداد گنگ یک نوع خیلی فراگیر می باشند، هر عددی در خط اعداد که یک عدد گویا نباشد، یک عدد گنگ است.

با این تعریف، هیچ عدد گنگی نمی تواند به صورت کسری نمایش داده شود، همچنین یک عدد گنگ نمی تواند به شکل یک عدد اعشاری مختوم (terminating decimal) یا به شکل یک عدد اعشاری متناوب (repeating decimal) نمایش داده شود. (برای اطلاعات بیشتر در مورد این انواع اعداد اعشاری، فصل 11 را ببینید).

در عوض، یک عدد گنگ می تواند تقریبی از یک عدد اعشاری نامتناهی (non-terminating)، و غیر تکرار شونده (non-repeating) باشد:

یک رشته از اعداد بعد از ممیز اعشاری که بدون ایجاد یک الگو می توانند تا ابد ادامه پیدا کنند.

مشهورترین مثال از اعداد گنگ عدد پی (π) می باشد، که نماینده محیط یک دایره با قطر 1 واحد می باشد. یک عدد گنگ رایج دیگر 2 می باشد، که نماینده طول قطر یک مربع با اندازه ضلع 1 واحد می باشد. در واقع، تمامی ریشه های توان دوم (square roots) از اعداد غیر مربع (non-square numbers) - مانند 3، 5، و به همین ترتیب - اعداد گنگ می باشند.

اعداد گنگ فضاهای موجود در خط اعداد حقیقی (real number line) را پر می کنند. (خط اعداد حقیقی همین خط اعدادی است که شما استفاده می کنید، اما متوالی است، هیچ جای خالی در آن وجود ندارد بنابراین هر نقطه ای بر روی آن با یک عدد جفت شده است.) اعداد گنگ در بسیاری از موارد که در آن نیاز به سطح دقت خیلی بالایی ندارید به شکل اعداد گویا مورد استفاده قرار می گیرند، اما مقدار دقیق آن عدد نمی تواند به صورت یک کسر نمایش داده شود.

اعداد گنگ دو نوع دارند: اعداد جبری (algebraic numbers) و اعداد متعالی (transcendental numbers). در مورد این دو نوع در ادامه همین فصل توضیحاتی را خواهم داد.

مجموعه اعداد جبری (Algebraic Numbers)

برای درک اعداد جبری، نیاز به اندکی دانش در مورد معادلات چند جمله ای (polynomial equations) دارید. یک معادله چند جمله ای، یک معادله جبری است که مطابق شرایط زیر باشد:

عملیات های آن محدود به جمع، تفریق، و ضرب باشد. به عبارت دیگر، لازم نیست که بر یک متغیر تقسیم کنید.

متغیرهای آن تنها به توان اعداد مثبت که در مجموعه اعداد کامل (whole-number) باشند، رسیده است.

شما می توانید در کتاب Algebra For Dummies اطلاعات بیشتری در مورد چندجمله ای ها بدست آورید.

در اینجا چند معادله چند جمله ای می بینید:

Picture2.png

هر عدد جبری به عنوان راه حل حداقل یک معادله چند جمله ای، نشان داده می شود. برای مثال، فرض کنید معادله زیر را دارید:

Picture3.png

شما می توانید این معادله را به شکل زیر حل کنید:

Picture4.png

بنابراین 2 یک عدد جبری می باشد که مقدار تقریبی آن برابر با ...1.4142135623 است.

مجموعه اعداد متعالی (Transcendental Numbers)

یک عدد متعالی (transcendental number)، در مقایسه با یک عدد جبری، هرگز راه حل یک معادله چند جمله ای نمی باشد. مشابه اعداد گنگ، اعداد متعالی نیز یک نوع فراگیر هستند: هر عددی در خط اعداد که عددی جبری نباشد، یک عدد متعالی است.

مشهورترین عدد متعالی π می باشد، که مقدار تقریبی آن برابر با ...3.1415926535 است. استفاده از این عدد در هندسه آغاز شد اما تقریباً به تمامی نواحی ریاضی گسترش یافت.

سایر اعداد متعالی مهم در هنگام مطالعه مثلثاث (trigonometry) برایتان پیش می آیند. سینوس ها (Sines) ، کسینوس ها (cosines)، تانژانتها (tangents) و سایر توابع مثلثاتی معمولاً اعداد متعالی می باشند.

یکی دیگر از اعداد متعالی مهم عدد e می باشد، که مقدار تقریبی آن ...2.7182818285 است. عدد e مبنای لگاریتم طبیعی (natural logarithm) می باشد، که احتمالاً تا زمانی که وارد مبحث حساب دیفرانسیل و انتگرال (calculus) نشوید، از آن استفاده نخواهید کرد. مردم از e برای حل مسائل مربوط به بهره مرکب (compound interest)، رشد جمعیت (population growth)، فروپاشی رادیو اکتیو (radioactive decay)، و مواردی از این دست، استفاده می کنند.(سایت خوش­آموز،مقاله ده مجموعه مهم اعداد که باید بشناسید)

[5] در جبر و هندسه، عددی حقیقی r عدد ترسیم‌پذیر (انگلیسی: Constructible number) است اگر و تنها اگر بتوان با داشتن پاره‌خط واحد، با خط‌کش و پرگار بتوان در تعداد مراحل متناهی پاره‌خطی به طول |r| رسم کرد. تمام اعداد حقیقی ترسیم‌پذیر نیستند و برای توصیف آنهایی که ترسیم‌پذیر هستند باید از روش‌های جبری استفاده کرد.

یک نقطه در فضای دوبعدی ترسیم‌پذیر است اگر نقطهٔ پایانی پاره‌خط واحد باشد، یا نقطهٔ تقاطع دو خط که با نقاط ترسیم‌پذیر تعریف شده‌اند، یا تقاطع خط و دایره‌ای که مرکزش نقطه‌ای تقسیم‌پذیر باشد و از یک نقطهٔ تقسیم‌پذیر بگذرد، یا تقاطع دو تا از این دایره‌ها.

به‌عبارت جبری، یک عدد ترسیم‌پذیر است اگر و تنها اگر بتوان آن را با اعمال مراحل متناهی چهار عمل اصلی و ریشه دوم (فقط ریشهٔ دوم و نه ریشه‌های بالاتر) بر اعداد ترسیم‌پذیر دیگر ساخت، و ۰ و ۱ بنابر تعریف تفسیر پذیرند.(سایت ویکی پدیا، مدخل عدد ترسیم پذیر)

عدد a را «رسم پذیر» گوییم اگر بتوان تنها با استفاده از خط کش و پرگار پاره خطی به طول a رسم کرد. و البته فرض ما بر این است که یک واحد طول داده شده باشد.از این به بعد هر جا کلمه رسم پذیری آمد منظور همان، رسم پذیری به وسیله خط کش و پرگار است.رسم پذیری بعضی عددها بسیار واضح است. مثلا ۱ و ۲ و … ... اما بعضی دیگر احتیاج به بررسی دارند مثل 2 . آیا این عدد رسم پذیر است؟ 

از دوران دبیرستان به یاد داریم که : از هر نقطه خارج یک خط مفروض می توان خطی عمود بر آن رسم کرد.اگر محل تلاقی این دو خط را مبدأ،در نظر بگیریم به این محور، محور رسم پذیر می گوییم.

 در این محور:

۱(a,0)يا(0,a) را رسم پذیر گوییم اگر a رسم پذیر باشد.

۲) (a,b) را رسم پذیر گوییم اگر a و b رسم پذیر باشند. 

هر شکلی را که روی این محور بتوان رسم کرد، اعم از پاره خط، دایره و... یک شکل رسم پذیر گوییم. 

حال می توانیم به راحتی بگوییم که  2رسم پذیر است. چون اگر(۰.۱)و (۰و۱) را روی محور به هم وصل کنیم بنابر قضیه فیثاغورث پاره خطی به طول  2داریم. حال سوالی که مطرح می شود این است که آیا همه اعداد رسم پذیرند؟ و اگر نه چه عددهایی رسم پذیرند و کدام ها رسم پذیر نیستند. همه عددها رسم پذیر نیستند و تعیین رسم پذیری آنها به کارهای تخصصی می‌انجامد.

حال سوالی که مطرح می شود این است که آیا همه اعداد رسم پذیرند؟ و اگر نه چه عددهایی رسم پذیرند و کدام ها رسم پذیر نیستند. همه عددها رسم پذیر نیستند و تعیین رسم پذیری آنها به کارهای تخصصی می انجامد اما حالا که مفهوم عدد رسم پذیر رو فهمیدیم چند حکم کلی درباره رسم پذیری رو هم بیان می کنیم:

۱) اگر a و b رسم پذیر باشند آنگاه a+b , a b , a.b , a/b نیز رسم پذیرند.

۲) اگر a رسم پذیر باشد آنگاه رادیکال a نیز رسم پذیر است.

۳) موارد زیر معادلند (یعنی اگر یکی از آنها در مورد یک عدد درست باشد دو تای دیگر نیز درستند):

الف) x رسم پذیر است.

ب) (Cos(x رسم پذیر است.

ج) (Sin(x رسم پذیر است.

۴) همه اعداد گویا (Q) رسم پذیر هستند.

 اکنون کار قضاوت در مورد رسم پذیری عددها خیلی ساده تر شد. تنها عددی ممکن است رسم پذیر نباشد که گنگ باشد. اما تعیین اینکه عدد گنگی رسم پذیر است یا نه دارای تکنیکهای ویژه ایست.

.(سایت آی هوش، مقاله رسم پذیر بودن یک عدد)

[6] در سال ۱۷۶۱ لامبرت ریاضیدان سوئیسی ثابت کرد که عدد پی گنگ است و نمی‌توان آن را به صورت نسبت دو عدد صحیح نوشت. همچنین در سال ۱۸۸۲ فردیناند فون لیندمان ثابت کرد که عدد پی یک عدد جبری نیست و نمی‌تواند ریشه یک معادله جبری باشد که ضرایب آن گویا هستند. (همانند عدد (e))کشف گنگ بودن عدد پی، به سال‌ها تلاش ریاضی‌دانان برای تربیع دایره پایان داد.(سایت ویکی پدیا)